
Integrated Modeling and Design of

Nonlinear Control Systems

Gilmer L. Blankenship Harry G. Kwatny Chris LaVigna V. Polyakov

Department of Electrical
Engineering &

Institute for Systems Research
University of Maryland

College Park, MD 20742
gilmer@eng.umd.edu

Department of Mechanical
Engineering
& Mechanics

Drexel University
Philadelphia, PA 19104

hkwatny@coe.drexel.edu

Techno-Sciences, Inc.
Suite 204

10001 Derekwood Lane
Lanham, MD 20706
chris@technosci.com

Department of Electrical
Engineering &

Institute for Systems Research
University of Maryland

College Park, MD 20742
polyakov@pansy.umd.edu

Abstract: A summary description of a symbolic computing
environment for nonlinear control system design is provided. The
software includes capabilities for modeling multibody dynamics
as well as linear and nonlinear control. Experience with
applications is noted.

Introduction

The past two decades have seen dramatic theoretical advances

in the analysis and control of nonlinear dynamical systems.

However, the application of this conceptual progress to systems

of meaningful scale has been impeded by the absence of good

computational tools. One important reason is that the required

calculations do not fit naturally into familiar numerical processes.

Our view is that symbolic computing has matured to a point that

does enable the application of modern nonlinear control theory to

significant engineering problems. In this paper we describe

software that has been under continuous development and

application over the past several years.

Our goal has been to develop an efficient set of portable

software tools that facilitates control system design from

conception to implementation. Consequently, we are concerned

with modeling, simulation, control system design and real time

implementation. Control system design in a symbolic

environment requires, of course, models in a symbolic or literal

form. Modeling is a primary issue in control systems engineering

practice and the need for symbolic models raises new issues.

We have been strongly influenced by the requirements of

specific applications of concern to us. Our priorities and software

choices reflect the practical needs of those applications. The

overall structure of the design environment as we currently use it

is illustrated in Figure 1. Our major contributions are the

modeling and control design software implemented in

Mathematica. In this paper we will describe and illustrate those

capabilities.

Model Bui ld ing Tools Contro l Design Tools
Symbo l ic

Mode l

Model S-Funct ion
Source Code (C)

Contro l S-Funct ion
Source Code (C)

Sys tem Mode l Control ler

Rea l T ime Workshop

D S P

Mathematica

MATLAB/SIMULINK

Figure 1. The control system design environment exploits
the capabilities of Mathematica and MATLAB/SIMULINK.
It integrates tools for model building, simulation, control
system design and real time implementation.

Software Environment

Overview

The software used for modeling and control system design is built

around Mathematica and MATLAB/SIMULINK, exploiting

various packages and toolboxes that extend and integrate their

basic capabilities. The symbolic computing tools we have

implemented in Mathematica enable the efficient assembly of

mathematical models for multibody dynamics [1] and provide for

the design of nonlinear and adaptive controllers [2]. This

0-7803-3835-9/97/$10.00 (c) 1997 AACC

functionality is provided by the Mathematica packages TSi

Dynamics and TSi Controls. These packages furnish several links

to MATLAB/SIMULINK. TSi Dynamics can produce C MEX-

files that define SIMULINK S-functions for simulation purposes

[3], TSi Controls can produce C MEX-files that define

SIMULINK S-functions for simulation or real time control

implementation, and TSi Controls can provide linear (numerical)

models for design and analysis using MATLAB’s extensive

facilities.

Symbolic Computing Capabilities

Modeling

In its current form the software contains a fairly

comprehensive set of tools for assembling models of multibody

mechanical systems. A few of these are listed in Table 1. The

model building process has two distinctive features. First, the

joints are defined in terms of their primitive action parameters

from which all the required kinematic relations are derived. Thus,

a user can contrive unusual joint configurations and is not

restricted to a predefined set of standard joints. Second, the

equations are formulated in Poincaré’s form of Lagrange’s

equations that admits the standard Lagrange equations as a

special case. However, Poincaré’s form allows the exploitation of

quasi–velocities which can greatly simplify the equations of

motion.

The explicit models generated are of the form:

Kinematics: � ()q V q p=

Dynamics: M q p C q p p F q p u() � (,) (, ,)+ + = 0

where q is a vector of configuration coordinates, p is a vector of

quasi–velocities and u is a vector of exogenous inputs. They may

be subjected to further symbolic processing for purposes such as

nonlinear model reduction, nonlinear control system design or

linearization. They may also be used for simulation or other

numerical analysis procedures. To facilitate the latter

applications, the package provides a direct interface to

MATLAB/SIMULINK. In view of the complexity of models

incorporating fully nonlinear kinematics, the C–code generated

for this purpose, is organized to minimize the required numerical

calculations.

To build a model, a user supplies defining data for individual

joints and bodies, and the system structure. With this data,

functions are available that can compute the kinetic energy

function and inertia matrix as well as the gravitational potential

energy function. It can also compute the strain potential energy

and dissipation functions associated with deformations of flexible

bodies. Various kinematic quantities can be obtained as well, e.g.,

end–effector configuration as a function of joint and deformation

parameters. To complete a dynamic analysis, the user must supply

the remaining parts of the potential energy function and

definitions for any generalized forces. Functions are available to

assist in developing these quantities.

Table 1. Multibody Dynamics

Function Name Operation

Joints returns all of the kinematic quantities

corresponding to a list of joint definitions

TreeInertia computes the inertia matrix of a multibody

system in a tree structure containing

flexible and rigid bodies

EndEffector returns the Euclidean Configuration Matrix

of a body fixed frame at a specified node

EndEffectorVelocity returns the (6 dim) spatial velocity vector of

a body fixed frame at a specified node

GeneralizedForce computes the generalized force at specified

node in terms of generalized coordinates

KinematicReplacements sets up temporary replacement rules for

repeated groups of expressions to simplify

kinematic quantities

CreateModel builds the kinematic and dynamic equations

for tree structures

DiffConstrainedSys adds differential constraints to a tree

configuration

AlgConstrainedSys adds algebraic constraints to a tree

configuration

Control

The control software can be grouped into three general

categories: linear control, nonlinear control and geometric tools.

While our main interest has been in the development of software

for nonlinear control system design we have found it convenient

to have some linear control capabilities in the symbolic

environment. Software tools are provided for the manipulation of

linear controls systems in state space or frequency domain forms.

Functions for the conversion of one form to the other are also

included. Examples of the functions provided are listed in Table 2

and Table 3.

We have also implemented functions required to apply

modern geometric methods of control system design to nonlinear

affine systems [4, 5]. These methods play an important role in

0-7803-3835-9/97/$10.00 (c) 1997 AACC

adaptive control system design [2, 5-7] and variable structure

control as well [8, 9]. Typical functions are given in Table 4 and

Table 5. Table 6 lists examples of geometric functions that have

been developed to support the control analysis constructions.

Table 2. Linear Systems: State Space

Function Name Operation

Controllable/Observable tests for controllability and observability

ControllabilityMatrix

ObservabilityMatrix

returns the controllability or observability

matrices, respectively

PolePlace state feedback pole placement based on

Ackermann’s formula with options

DecouplingConrol state feedback and coordinate

transformation that decouples input-

output map

RelativeDegree computes the vector relative degree

LQR, LQE compute optimal quadratic regulator and

estimator parameters

Table 3. Linear Systems: Frequency Domain

Function Name Operation

LeastCommonDenominator finds the least common denominator of

the elements of a proper, rational G(s)

Poles finds the roots of the least common

denominator

LaurentSeries computes the Laurent series up to

specified order

HankelMatrix computs the Hankel matrix associated

with Laurent expansion of G(s)

McMillanDegree computes the degree of the minimal

realization of G(s)

ControllableRealization

ObservableRealization

compute, respectively, the controllable

and observable realizations of a transfer

function

Table 4. Nonlinear systems: Geometric Control

Function Name Operation

VectorRelativeOrder computes the relative degree vector

DecouplingMatrix computes the decoupling matrix

IOLinearize computes the linearizing control

NormalCoordinates computes the partial state transformation,

LocalZeroDynamics computes the local form of the zero dynamics

StructureAlgorithm computes the parameters of an inverse system

DynamicExtension applies dynamic extension as a remedy for

singular decoupling matrix

Table 5. Nonlinear systems: Adaptive Control

Function Name Operation

AdaptiveRegulator generates an adaptive regulator for a class of

linearizable systems

AdaptBackstepReg computes an adaptive regulator by backstepping

for SISO systems in PSFF form

AdaptiveTracking computes an adaptive tracking controller

PSFFCond tests a system to determine if it is reducible to

PSFF form

PSFFSolve transforms a system to PSFF form if possible

Table 6. Nonlinear systems: Geometric Tools

Function Name Operation

LieBracket computes the Lie bracket of a given pair of

vector fields

Ad computes the iterated Lie bracket of specified

order of a pair of vector fields

Involutive tests a set of vector fields to determine if it is

involutive

Span generates a set of basis vector fields for a

given set of vector fields

FlowComposition generates a composite function from a given

set of flows

ParametricManifold computes a parametric representation for an

imbedded manifold

StateTransformation transforms nonlinear dynamic models in various

forms

Example

As an illustration of integrated modeling and control we will

consider the application of the symbolic computing tools to the

lateral dynamics of an automobile as illustrated in Figure 2. The

problem is simple enough that we can present results in limited

space. The vehicle has only three degrees of freedom associated

with the coordinates (, ,)x y θ . It has three controls: steering angle

δ, drive forces Fr , Fl at the right and left wheel, which can be

represented in terms of an F,δF defined via F F Fr = + δ and

F F Fl = − δ . Thus, we have three independent controls δ δ, ,F F .

δF could be used for traction control, but we will not consider

that here.

We consider the possibility of shaping the lateral handling

qualities by using a stability augmenting regulator that

0-7803-3835-9/97/$10.00 (c) 1997 AACC

manipulates δ and F to control speed Vs and angular velocity ω.

First, we consider modeling and then control.

θ

δ

m J,

F F+ δ

a

b

θ

F F− δ

"

•

Space Frame

θ

F F+δ

θ

F F− δ

•

x

y

v

u

VVs = V

X

Y

Body Frame

Figure 2. A simple model for the lateral dynamics of an
automobile, patterned after [10].

Modeling

We construct a model similar to that described in [10] (see

also [11]) except that, unlike the linear model developed therein,

we retain all of the geometric nonlinearities. We also include

caster and camber in the front wheels. We will present results,

however, in which camber is assumed to be negligible and caster

is small so that it can be approximated by first order terms.

rotation axis

slope s,

m I

combined tire

inertial parameters

2,

Figure 3. Physical characteristics of the front wheels. The
tire side force coefficient is κ.

We do not consider the suspension system, the rotational

energy of the wheels, aerodynamics, or other details of the

steering system that might be of interest. One important aspect of

computer model construction is that it is relatively easy to rebuild

the model (and simulation code for that matter) with such

refinements.

Modeling proceeds as follows:

• define the joints

• define the body geometry and inertial parameters

• define the system interconnection structure

• define the potential energy storage components

• define and develop the generalized forces

The model can then be assembled. If desired the model can be

further manipulated, for example by a coordinate transformation.

In this case, it is convenient to transform the linear velocity
representation from components v vx y, to speed and sideslip

angle Vs,β : v Vx s= cosβ , v Vy s= sinβ . Thus, we obtain:

J I a b m am am V

m m m m V

am m m m m V

V

f

f

f

zz zz s

s

s

s

+ + +
+ − +
+ +

































=
















2 2 2 2

0 2 2

2 2 2

2 2
2 2 2

2 2

2 2 2

1

2

3

() sin cos

()cos () sin

()sin () cos

�

�

�

β β
β β
β β

ω

β

where:

() ()()f
V

V a V a b V RsV b a V V Rs m V
s

s s s s s s s1 2

2

2 2
2

22

2
2= − 



 + + + − + + + − + +











"
δκω β ω κω κ β β ω βκ δκ κ ω ω()

f F
a

V
m m V am

s
s2 2 2

22 2
2

2 2= + + + + +βδκ
δκω

β ω ω()

()()f
V

V V a b Rs mV m V
s

s s s s3
2

2
21

4 2 2 2 2 2= − + − − + + +βκ δκ κ κ κ ω

The functions f f f1 2 3, , have been simplified for presentation by

expanding them to first order in s,δ and second order in β ω, .

I-O Linearization

The goal of a driver the vehicle is to regulate Vs,ω using the

controls F ,δ . A stability augmenting regulator can be used to

shape the dynamics as seen by the driver. The design of such a

regulator can be approached via feedback linearizaton. The idea

is to linearize and decouple the input-output dynamics and then

employ a stabilizing linear compensator. For this approach to be

viable, the system must have well-defined vector relative degree

and the zero dynamics must be stable. It is a straightforward

matter to use the functions in Table 4 to compute the vector

relative degree, the feedback linearizing control and the zero

dynamics.

To perform these computations requires:

• place the system in state variable form: � (,)x F x u=

0-7803-3835-9 /97 /$10 .00 (c) 1997 AACC

• separate the right hand side into the form: f x G x u() ()+

• compute the feedback linearizing control

• compute the normal coordinates

• compute the zero dynamics

The calculations reveal that the vector relative degree is {1,1}, as

anticipated, so that the zero dynamics are of dimension one. The

linearizing control is quite complex so it is not displayed here. A

local description of the zero dynamics is obtained around an

equilibrium point corresponding to straight motion with constant

velocity V0 . All parameters have been specified except tire radius

R and camber s. Up to third order the zero dynamics are:

�

. . . .
w

Rs

V
w

Rs

V
w1

0
1

0
1
3171243 185128 856216 9 25639

=
− +

+
− +

Concluding Remarks

The authors and colleagues have applied these tools to several

more substantive modeling and control problems. Modeling and

simulation applications include a 15 degree of freedom tracked

vehicle with flexible hull and 10 road wheels [12], an 18 wheel

tractor-trailer, and numerous robot configurations with flexible

and rigid elements. Modeling and control applications include a

30 mm Apache chain gun with flexible barrel and novel sensing

and actuation devices [13], [14]. That project enabled the full

scope of the tools to be demonstrated including model validation

and real time control.

Ongoing work in flight dynamics and control has led to new

symbolic tools for generating parametrically dependent

equilibrium surfaces and deriving linear families of models from

parameter dependent nonlinear dynamics [15]. Symbolic

computing tools for modeling and adaptive control for systems

with hard (nondifferentiable) nonlinearities [16] are under

development and real time implementation of adaptive controllers

is planned.

References

[1] H. G. Kwatny and G. L. Blankenship, “Symbolic
Construction of Models for Multibody Dynamics,” IEEE
Transactions on Robotics and Automation, vol. 11, pp. 271-
281, 1995.

[2] G. L. Blankenship, R. Ghanadan, H. G. Kwatny, C. LaVigna,
and V. Polyakov, “Integrated tools for Modeling and Design
of Controlled Nonlinear Systems,” IEEE Control Systems,
vol. 15, pp. 65-79, 1995.

[3] Anonomous, SIMULINK: Release Notes V1.3. Natick: The
MathWorks, Inc., 1994.

[4] A. Isidori, Nonlinear Control Systems, 3 ed. London:
Springer-Verlag, 1995.

[5] H. Nijmeijer and H. J. van der Schaft, Nonlinear Dynamical
Control Systems. New York: Springer–Verlag, 1990.

[6] I. Kanellakapoulos, P. V. Kokotovic, and A. S. Morse,
“Systematic design of Adaptive Controllers for Feedback
Linearizable Systems,” IEEE Transactions on Automatic
Control, vol. AC–36, pp. 1241–1253, 1991.

[7] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic,
“Adaptive Nonlinear Control Without Overparameterization,”
Systems and Control Letters, vol. 19, pp. 177-185, 1992.

[8] H. G. Kwatny and H. Kim, “Variable Structure Regulation of
Partially Linearizable Dynamics,” Systems & Control Letters,
vol. 15, pp. 67–80, 1990.

[9] H. G. Kwatny and G. L. Blankenship, “Symbolic Tools for
Variable Structure Control System Design: The Zero
Dynamics,” presented at IFAC Symposium on Robust
Control via Variable Structure and Lyapunov Techniques,
Benevento, Italy, 1994.

[10] E. O. Doebelin, System Modeling and Response:
Theoretical and Experimental Approaches. New York: John
Wiley & Sons, 1980.

[11] J. I. Neimark and N. A. Fufaev, Dynamics of
Nonholonomic Systems, vol. 33. Providence: American
Mathematical Society, 1972.

[12] C. LaVigna, H. G. Kwatny, and G. L. Blankenship,
“Flexible Multibody Dynamical Analysis System,” Techno–
Sciences, Inc., Lanham Phase I Final Report, Contract No.
DAAE07–93–CR022, December 1993.

[13] C. Lavigna, “Adaptive Stabilization of Weapon Systems
Using Surface Mounted Adaptive Structure Technology,”
Techno-Sciences, Inc., Lanham, Phase II Final Report,
DAAA21-94-C-0066 November 1996.

[14] C. LaVigna, H. G. Kwatny, G. L. Blankenship, and M.
Mattice, “A Rapid Prototyping Workstation for Design of
Distributed Parameter Control Systems,” in Computational
Science in the 21st Century, J. Periaux, Ed.: John Wiley &
Sons, 1997.

[15] H. G. Kwatny and B.-C. Chang, “Constructing Linear
Families from Parameter-Dependent Nonlinear Dynamics,” to
be submitted, 1997.

[16] G. Tao and P. V. Kokotovic, Adaptive Control of Systems
with Actuator and Sensor Nonlinearities. New York: J. Wiley
and Sons, Inc., 1996.

0-7803-3835-9/97/$10.00 (c) 1997 AACC

